

Journal of Organometallic Chemistry 508 (1996) 13-22

Zirkoniumorganische Chemie mit anorganischen Donorliganden N,N'-Bis(trimethylsilyl) benzamidinat (Siam) in Verbindungen des Typs $(Siam)_2 ZrX_2 (X = Methyl, Benzyl, Allyl, Chlorid oder Iodid)$ und $(Siam)_3 ZrX (X = Chlorid)$

D. Walther ^{a,*}, R. Fischer ^a, H. Görls ^b, J. Koch ^a, B. Schweder ^a

^a Friedrich-Schiller-Universität Jena, Institut für Anorganische und Analytische Chemie, August-Bebel-Straße 2, Jena D-07743, Deutschland ^b Max-Planck-Arbeitsgruppe CO₂-Chemie, Lessing-Straße 12, D-07743 Jena, Deutschland

Eingegangen am 25. November 1994

Abstract

Organometallic compounds of the type $(Siam)_2 Zr X_2$ (Siam = N, N'-bis(trimethylsilyl)benzamidinat; X = methyl, benzyl or allyl) have been synthesized by reaction of $(Siam)_2 Zr Cl_2$ and Grignard reagents. The structures of $(Siam)_2 Zr X_2$ (X = Cl, I, CH_3 or $CH_2 - C_6 H_5$) and $(Siam)_3 Zr Cl$ have been investigated by X-ray crystal structure analysis. $(Siam)_3 Zr Cl$ shows a capped octahedral structure with the coordination number 7 at the zirconium. $(Siam)_2 Zr X_2$ compounds have distorted octahedral structures and the ligands occupy *cis*-positions. The distortion depends on the bulkiness of the ligand X.

The systems $(Siam)_2 ZrCl_2$ -methylalumoxan (MAO) and $(Siam)_3 ZrCl-MAO$ polymerize at 30°C reactive olefins such as ethylene or norbornene. Less reactive olefins (e.g. propene) can be reacted with $(Siam)ZrCl_3$ -MAO to yield oligomers and polymers. The same catalytic system is able to convert 1,5-hexadiene selectively under formation of methylene-cyclopentane.

Zusammenfassung

Organometallverbindungen des Typs $(Siam)_2 ZrX_2$ $(Siam = N, N'-Bis(trimethylsilyl)benzamidinat; X = Methyl, Benzyl oder Allyl) wurden durch Reaktion von <math>(Siam)_2 ZrCl_2$ mit den entsprechenden Grignard-Verbindungen synthetisiert. Die Strukturen der Verbindungen $(Siam)_2 ZrX_2$ $(X = Cl, I, CH_3 oder CH_2-C_6H_5)$ und $(Siam)_3 ZrCl$ wurden durch Röntgenkristallstrukturanalyse aufgeklärt. $(Siam)_3 ZrCl$ besitzt eine "capped" oktaedrische Struktur mit der Koordinationszahl 7 am Zirkonium. Die Verbindungen $(Siam)_2 ZrX_2$ sind verzerrt oktaedrisch aufgebaut und die Liganden besetzen *cis*-Positionen. Das Ausmaß der Verzerrung ist vom Raumbedarf von X abhängig.

Die Systeme (Siam)₂ZrCl-Methylalumoxan (MAO) und (Siam)₃ZrCl-MAO polymerisieren bei 30°C reaktive Olefine wie Ethylen oder Norbornen. Weniger reaktive Olefine (z.B. Propen) können mit (Siam)ZrCl₃-MAO zu Oligomeren und Polymeren reagieren. Das gleiche katalytische System kann 1,5-Hexadien selektiv zu Methylen-cyclopentan umwandeln.

Keywords: Zirconium; Alkyl; Allyl; X-ray diffraction; Catalysis

1. Einleitung

Im Rahmen von Untersuchungen zum Einfluß von Chelatliganden mit anorganischen Haftatomen auf die katalytische Reaktivität von Metallorganoverbindungen der 4. Nebengruppe [1] haben wir auch Verbindungen mit dem N,N'-Bis(trimethylsilyl)benzamidinato-Liganden (Siam) einbezogen. Die anorganische Zirkoniumchemie mit diesem Liganden wurde 1988 mit den Arbeiten von Dehnicke und Mitarbeitern [2] ([Siam] ZrCl₃) beziehungsweise Roesky et al. [3] ([Siam]₂ZrCl₂) eingeleitet. Edelmann hat die stereochemische Analogie zum Pentamethylcyclopentadienylanion festgestellt [4] und an Lanthanoidkomplexen die "elektronische Äquivalenz" zum Cyclopentadienylsystem untersucht [5].

^{*} Corresponding author.

⁰⁰²²⁻³²⁸X/96/\$15.00 © 1996 Elsevier Science S.A. All rights reserved SSDI 0022-328X(95)05853-2

Reaktionsschema 1.

Metallorganische Verbindungen des Typs Cp(Siam) MX_2 (M = Ti, Zr oder Hf [6], (Siam)₃UCH₃ des Uran (IV) [7] und (Siam)₂Ti(allyl) des Titan(III) [8] sind in jüngster Zeit beschrieben worden. Teuben insbesondere hat die Metallorganochemie des Yttriums mit diesem Liganden intensiv studiert und die Wirkung von Siam auf die katalytische Aktivität dieser Verbindungen im Vergleich zu Cp-stabilisierten Verbindungen untersucht [9].

Gegenstand dieser Arbeit sind Synthese und Struktur von metallorganischen Verbindungen des Typs $(Siam)_2$ ZrR₂ (R = Me [10], Benzyl oder Allyl) und von Halogeniden der Zusammensetzung $(Siam)_{4-n}$ ZrX_n (n = 1, 2; X = Cl oder I), sowie erste Untersuchungen zur

Abb. 1. Kristallstruktur der Verbindungen 1 und 2 [19].

katalytischen Aktivität in Ziegler-Natta-Systemen mit Methylalumoxanen (MAO).

2. Synthese und Strukturen der N,N'-Bis(trimethylsilyl)benzamidinato-zirkoniumhalogenide (1-3)

Das Reaktionsschema 1 informiert über die Synthesewege zu den Halogenverbindungen, die als Edukte auch für sterische Vergleiche dienen und daher durch Röntgenstrukturanalysen charakterisiert wurden.

 $(Siam)_2 ZrCl_2$ wurde bereits von Roesky aus Lithium-N, N'-bis(trimethylsilyl)benzamidinat und Zirkoniumtetrachlorid synthetisiert und H-NMR-spektroskopisch untersucht [3]. Verbindung 1, die NMR-spektroskopisch mit der von Roesky et al. beschriebenen identisch ist, zeigt nach Ausweis der Kristallstrukturanalyse eine *cis*-Struktur der Chloroliganden und ist daher strukturell mit Cp₂ZrCl₂ vergleichbar. (Abb. 1).

Auch in der Verbindung 2 nehmen die Iodoliganden

die *cis*-Position im verzerrt oktaedrischen Komplex ein. Der Übergang zu dem deutlich größeren Halogenid führt also nicht zu einem *trans*-Komplex, sondern lediglich zu einem Zusammendrängen der Benzamidinatoliganden am Zirkonium.

Für weitere stereochemische Vergleiche und für katalytische Untersuchungen ist auch die Verbindung $(Siam)_3$ ZrCl 3 bedeutsam, die durch Reaktion von 1 oder Zirkoniumtetrachlorid mit einem Überschuß an Lithium-*N*,*N'*-bis(trimethylsilyl)-benzamidinat zugänglich ist. Die Röntgenstrukturanalyse von 3 zeigt, daß es zu einer Aufweitung der Koordinationssphäre am Zirkonium auf die Koordinationszahl 7 kommt (Abb. 2). Die Koordinationsgeometrie um das Zirkonium läßt sich annähernd als "capped" oktaedrisch beschreiben. Damit wird verständlich, daß die SiMe₃-Gruppen in den NMR-Spektren nicht mehr chemisch äquivalent sind. In der Elementarzelle liegen zwei strukturunabhängige Moleküle im Verhältnis 1:1 vor. Es handelt sich dabei um die zwei optischen Antipoden, in denen die Benz-

Abb. 2. Kristallstrukturanalyse von 3 (Methyl- und Phenylgruppen sind im unteren Teil zur besseren Übersicht weggelassen).

	1	3	2	4	
	X = Cl	X = Cl	$\mathbf{X} = \mathbf{I}$	$X = CH_3$	
Bindungslängen			······································		
Zr–X (Å)	2.4002(9)	2.464(2)	2.8099(5)	2.248(2)	
Zr-N(1) (Å)	2.209(2)	2.325(4)	2.174(2)	2.240(1)	
Zr-N(2) (Å)	2.239(2)	2.249(4)	2.265(2)	2.312(2)	
N(1)-C(1) (Å)	1.333(3)	1.330(7)	1.346(2)	1.337(2)	
N(2)-C(1) (Å)	1.323(3)	1.329(5)	1.326(2)	1.323(2)	
C(1)–C(2) (Å)	1.502(4)	1.503(7)	1.501(3)	1.497(2)	
Bindungswinkel					
$X-Zr-X^*$ (°)	103.38(7)	-	107.76(2)	106.4(2)	
$N(1) - Zr - N^{*}(1) (^{\circ})$	90.1(1)	89.84(13)	92.77(9)	92.76(8)	
$N(2) - Z_{r} - N^{*}(2) (^{\circ})$	168.9(1)	118.14(4)	178.82(9)	176.31(7)	
Zr, N(1), N(2)-Phenyl (°)	74.6	86.0	81.0	79.9	
$C(1) - Zr - C^{*}(1)$ (°)	125.1(1)	115.24(7)	131.87(9)	131.5(2)	

Aucoawählta	Rindungelöngen	und	winkal	dar	Pöntgenkristelletrukturen von	1 /
Ausgewählte	Dinuungslangen	սոս	-winker	aei	Rongenkristanstrukturen von	1-4

amidinatliganden propellerartig rechts- beziehungsweise linksdrehend angeordnet sind. Die wichtigsten Bindungslängen und -winkel der drei mittels Kristallstrukturanalyse charakterisierten Halogenide sind unter andern in Tabelle 1 zusammengefaßt.

3. Synthese und Strukturen der zirkoniumorganischen Verbindungen 4–7

Die Umsetzung von $(\text{Siam})_2 \text{ZrCl}_2$ mit Organolithium- oder Grignard-Verbindungen verläuft nur mit β -wasserstoffreien und schlanken organischen Gruppen (Methyl, Benzyl und Allyl) erfolgreich. In den anderen bisher untersuchten Fällen (Ethyl, Butandiyl, Butadiendiyl und Phenyl) erfolgten Zersetzungsreaktionen, ohne daß eine definierte Verbindung isoliert werden konnte. Die Dimethylverbindung 4 läßt sich in guten Ausbeuten durch Umsetzung von 1 mit zwei Äquivalenten Methylmagnesiumiodid darstellen, über ihre Synthese und ihr H-NMR-Spektrum wurde kürzlich berichtet [10].

Die Festkörperstruktur von 4 ist in Abb. 3 wiedergegeben, und Bindungslängen beziehungsweise -winkel sind in Tabelle 1 aufgelistet. Das Zirkonium ist verzerrt oktaedrisch von zwei Benzamidinatliganden und zwei Methylgruppen umgeben. Somit liegt, wie auch in den Dihalogeniden 1 und 2, eine *cis*-Anordnung der Liganden vor.

In den H-NMR-Spektren wird bis zu einer Temperatur von -90° C nur ein Singulett für die SiMe₃-Gruppen gefunden, d.h. in Lösung rotieren die Benzamidinato-Liganden offenbar so schnell, daß sie in der NMR-Zeitskala nicht aufgelöst sind. Die Lage der NMR-Resonanzen für die Zr-CH₃-Gruppe legt nahe, daß der Benzamidinato-Ligand Siam im Vergleich zu dem Cp-

Abb. 3. Kristallstrukturanalysen von $(\text{Siam})_2$ -Zr $(\text{CH}_3)_2$ (4) und $(\text{Siam}_2$ Zr $(\text{CH}_2\text{C}_6\text{H}_5)_2$ (6) [19].

Tabelle 1

Tabelle 2 Ausgewählte Bindungslängen (Å) der Röntgenkristallstruktur von

Ausgewählte Di	nuungsiangen (A) del Rolligenkils	
Zr-C(27)	2.315(4)	Zr-C(34)	2.301(3)
C(27)–C(28)	1.488(5)	C(34)-C(35)	1.432(5)
Zr-N(3)	2.257(3)	Zr-N(1)	2.224(3)
ZrN(4)	2.271(3)	Zr-N(2)	2.283(3)
N(3)-C(14)	1.336(4)	N(1)-C(1)	1.339(4)
N(4)-C(14)	1.331(4)	N(2) - C(1)	1.335(4)
C(14)C(15)	1.506(4)	C(1)-C(2)	1.497(4)

Liganden einen stärkeren Elektronenzug am Zentralatom bewirkt.

Bei der Reaktion von 1 mit einem Äquivalent Benzylmagnesiumchlorid gelingt es bei 0°C zunächst nur, einen Chloroliganden zu substituieren. Es entsteht die hellgelbe Verbindung (Siam), ZrCl(benzyl) 5. Bei der Umsetzung von 1 mit zwei Äquivalenten Benzyl-Grignard-Reagenz bildet sich bei 36°C neben 5 auch die Dibenzylverbindung 6 (Tabellen 2 und 3). Deren Kristallstrukturanalyse zeigt, daß das Zirkonium wiederum verzerrt oktaedrisch von zwei Benzamidinatliganden und zwei Benzylgruppen in cis-Anordnung umgeben ist (Abb. 3). Die Verbindung weist jedoch eine niedrigere Symmetrie als die vergleichbare Dimethylverbindung 4 auf. Die zweizählige Drehachse ist verloren gegangen. weil sich offenbar die größeren Benzylgruppen gerade noch so zwischen die Benzamidinato-Liganden hineindrängen können. Dieser sterische Effekt führt auch dazu, daß die beiden Benzylgruppen η^1 -koordiniert sind.

Tabelle 3 Ausgewählte Bindungswinkel (°) der Röntgenstruktur von 6

C(27) - Zr - C(34)	96.2(2)			
C(27)-Zr-N(3)	101.11(14)	C(34) - Zr - N(2)	107.61(12)	
C(27)-Zr-N(4)	98.27(12)	C(34) - Zr - N(1)	89.50(12)	
C(27)-Zr-N(1)	144.92(12)	C(34) - Zr - N(3)	147.89(12)	
C(27)-Zr-N(2)	85.05(12)	C(34) - Zr - N(4)	90.60(12)	
Zr-C(27)-C(28)	117.6(2)	Zr-C(34)-C(35)	116.6(2)	
N(3)-Zr-N(1)	91.60(10)	$N(1) - Z_{f} - N(4)$	116.31(10)	
N(3)-Zr-N(2)	100.71(10)	N(2) - Zr - N(4)	161.11(9)	
N(3)-Zr-N(4)	60.40(10)	N(1)-Zr-N(2)	60.37(9)	
N(3) - C(14) - N(4)	117.3(3)	N(1)-C(1)-N(2)	115.9(3)	
C(1)-Zr-C(14)	126.1			

In den ¹H-NMR-Spektren tritt bei Raumtemperatur nur jeweils ein Singulett für die Protonen der SiMe₃und Zr-CH₂-Gruppen auf. Während das Signal für die SiMe₃-Gruppen bis -90° C erhalten bleibt, beginnt sich das Signal der benzylischen CH₂-Protonen bei 0°C zu verbreitern, bei -35° C tritt Koaleszenz ein, und bei tieferen Temperaturen ist ein Dublett zu sehen. Aus den NMR-Daten ist eine Rotationsbarriere um die Zr-C-Bindung von 47.6 kJ mol⁻¹ zu berechnen.

Bei der Umsetzung von 1 mit zwei Äquivalenten Allylmagnesiumchlorid entsteht in glatter Reaktion die Diallylverbindung $(Siam)_2 Zr(allyl)_2$ (7), deren ¹H-NMR-Spektrum bei Raumtemperatur für die SiMe₃-Gruppen ein Singulett bei 0.01 ppm zeigt. Das Quintett bei 6.70 ppm und das Dublett bei 3.71 ppm sind den

Tabelle 4 Vergleich von ausgewählten Daten der Kristallstrukturanalysen von L₂ZrX₂

X Bindungswinkel X–Zr–X (°) Cp Cp*	Bindungswink	Bindungswinkel X-Zr-X (°)			Bindungswinkel L-Zr-L (°)		Bindungslänge Zr-X (Å)		
	Cp *	Siam	Ср	Siam	Ср	Ср*	Siam		
Cl	97.1 [11] 97.7	<u>,,,,,,</u>	103.4	126.0 128.3	125.1	2.44 2.45		2.40	
I	96.2 [12a]	93.5 [12b]	107.8	126.3	131.8	2.85	2.83	2.81	
CH ₃	95.6 [13]		106.4	132.5	131.5	2.27 2.28		2.25	
CH ₂ -Ph	-		96.2	-	126.1	-		2.30 2.31	

(L = Cp oder Cp[•]; Siam X = Cl, I, CH₃ oder CH₂-C₆H₅)

Tabelle 5

Vergleich der ¹H-NMR- und ¹³C-NMR-Spektren der zirkonorganischen Verbindungen Cp₂ZrR₂, Cp^{*}₂ZrR₂ und (Siam)₂ZrR₂ in C₆D₆

Zr-R	$Cp_2 ZrR_2$		$Cp_{2}^{*}ZrR_{2}$,	(Siam) ₂ ZrR ₂	
	¹ H-NMR, δ (ppm)	¹³ C-NMR, δ (ppm)	¹ H-NMR, δ (ppm)	¹ H-NMR, δ (ppm)	¹³ C-NMR, δ (ppm)
Zr-CH ₃	-0.39 [14a]		-0.62 [14b]	0.93	44.8
Zr-CH ₂ -Ph	1.84 [15a]	60.6	1.59 [15b]	2.82	78.3
$Zr - \eta^3 - C_3 H_5$ = CH ₂ = CH-	2.89 [16] 5.63 [16]			3.71 6.70	86.7 143.3

mittelständigen beziehungsweise den endständigen Protonen der η^3 -gebundenen Allylgruppen zuzuordnen. Das Singulett der SiMe₃-Gruppen beginnt sich bei – 20°C zu verbreitern und bei – 27.5°C tritt Koaleszenz auf. Bei noch tieferen Temperaturen treten dann zwei Singuletts auf, d.h. die Rotation der Benzamidinatoliganden ist eingefroren. Aus den NMR-Daten ist eine Rotationsbarriere von 49.3 kJ Mol⁻¹ zu berechnen. Die Signale für die Allylgruppen bleiben bis – 80°C praktisch unverändert.

4. Diskussion

Die vorliegenden Strukturanalysen von 1–4 und 6 unterstützen die Annahme, daß das $(Siam)_2$ Zr-Fragment sterische Ähnlichkeit zum Cp₂Zr beziehungsweise Cp₂^{*}-Zr-Fragment hat. In Tabelle 4 sind die wichtigsten Strukturdaten der entsprechenden Verbindungen gegenübergestellt.

Der Benzamidinatoligand Siam ist etwas voluminöser und hat im Vergleich zum Cp beziehungsweise Cp* eine mehr elliptische Peripherie. Das zeigt sich in den generell kleineren X-Zr-X-Bindungswinkeln der Cpund Cp*-Komplexe. Dagegen sind die Bindungslängen Zr-X der Benzamidinatokomplexe kürzer als bei den analogen Cp- und Cp*-Verbindungen. Diese Befunde sind durch einen stärkeren Elektronenzug der Benzamidinatoliganden mit ihren anorganischen Donorgruppen und damit einem größeren ionischen Bindungsanteil erklärbar. Auch in Lösung gelten diese Aussagen, wie anhand der NMR-Spektren geschlossen werden kann (Tabelle 5). In den Siam-Zirkoniumverbindungen liegt also-vereinfachend ausgedrückt-ein Metallzentrum vor, das im Vergleich zu analogen Cp₂Zr-Komplexen eine stärkere Lewis-Säure ist.

5. Orientierende Versuche zur katalytischen Aktivität der 1, 3 und [(Siam)ZrCl₃]₂ mit Methylalumoxan als Cokatalysator

Erste vergleichende Untersuchungen von Ziegler-Natta-Katalysatoren aus 1, 3 oder dem ligandärmsten Komplex [(Siam)ZrCl₃]₂ mit MAO als Cokatalysator wurden mit Ethylen, Propylen, Norbornen und Hexadien-1,5 durchgeführt. (Molverhältnis, Katalysator : MAO: Substrat, 1:100:200–1000). Ethylen wird bei 30°C in einer langsamen Reaktion von allen drei Katalysatorsystemen katalytisch zu Polyethylen umgesetzt. Dabei werden nach 24 h Umsatzzahlen von 600– 700 erreicht. Im Vergleich mit dem Katalysatorsystem Cp₂ZrCl₂-MAO ist die Aktivität um mehr als den Faktor 10³ geringer.

Propylen wird lediglich mit dem ligandärmsten

Katalysatorsystem $[(Siam)ZrCl_3]_2$ -MAO mit erwartungsgemäß noch geringerer Reaktionsgeschwindigkeit (ungefähr 100–110) umgesetzt, wobei als Hauptprodukt neben geringen Mengen ataktischen Polypropylen oligomere Produkte durch "gas chromatography-mass spectroscopy" (GC-MS) identifiziert werden, und zwar neben wenig Dimeren, Trimere, Tetramere und Pentamere.

Norbornen bildet unter Ringöffnungspolymerisation mit Umsatzzahlen bis 480–24 h Polynorbornen. Das entstandene Produkt ist sehr schwer löslich, so daß es nur IR-spektroskopisch und thermogravimetrisch untersucht wurde. Erstere liefert den Hinweis auf das überwiegende Vorliegen von *trans*-Strukturen [17]. Das Produkt beginnt sich bei 150°C teilweise zu zersetzen (36% Masseverlust), vollständige Zersetzung tritt bei 420°C ein.

Die erhaltenen Ergebnisse erlauben den Schluß, daß die geprüften Komplexe generell C-C-Verknüpfungsreaktionen nur sehr langsam katalysieren, so daß sie als Polymerisationskatalysatoren ungeeignet sind.

1,5-Hexadien kann mit $[(Siam)ZrCl_3]_2$ -MAO überraschend selektiv zu Methylen-cyclopentan cyclisiert werden, wenn bei 40°C gearbeitet wird. Die Bildung von Dimeren oder höheren Oligomeren bzw. Polymeren wird nicht beobachtet. Siam-reichere Komplexe sind inaktiv. Im Vergleich dazu wird 1,5-Hexadien mit dem Cp₂ZrCl₂-MAO-System unter vergleichbaren Bedingungen in einer schnelleren Reaktion unselektiv zu einem Oligomerengemisch umgesetzt, das zu 33% aus Monomeren, 37% aus Dimeren, 23% Trimeren mit 7% Tetrameren besteht.

Unter anderen Bedingungen werden aus Hexadien (1,5) Polymere erhalten [18]. Auch in der Reaktion mit 1,5-Hexadien zeigt sich der generelle Unterschied zwischen Zirconocen-Typ-MAO-Katalysatoren und (Siam)-Zr-Komplexen, aktiviert mit MAO. Letztere reagieren auch hier langsam in C-C-Verknüpfungsreaktionen, und das ermöglicht, die Reaktion mit Hexadien (1,5) im monomere-Regime zu halten.

6. Experimenteller Teil

Alle Arbeiten wurden unter einer Argonschutzgasatmosphäre ausgeführt. Die NMR-Spektren wurden auf einem 200 MHz-Spektrometer der Firma Bruker aufgenommen. Die kristallographischen Strukturbestimmungen erfolgten auf einem Enraf-Nonius CAD4-Diffraktometer mit MoK α -Strahlung ($\lambda = 0.710$ 69 Å; Graphit-Monochromator) mittels "least-squares"-Verfeinerung der 2 θ -Werte von 25 Reflexen. Röntgenintensitäten wurden in ω -2 θ -Abtastung gemessen. Eine Lorentz und Polarisationskorrektur wurde durchgeführt [19]. Eine Absorptionskorrektur erfolgte bei Verbindung 2. Die Strukturen wurden mittels direkter Methoden gelöst (SHELXS-86) [20], wodurch der größte Teil der Nichtwasserstoffatome lokalisiert wurde. Durch Differenzfouriersynthesen konnten die restlichen Nichtwasserstoffatome ermittelt werden. Das erhaltene vorläufige Strukturmodell wurde im Vollmatrix-LSQ-Verfahren anisotrop verfeinert (Verbindung 1, 2 und 4 mittels [19]; Verbindung 3 und 6 durch [21,22]. In der Tabelle 6 sind einige kristallographische Daten zu den Kristallstrukturen zusammengefaßt. Weitere Einzelheiten zur Kristallstrukturanalyse können beim Fachinformationszentrum Energie, Physik, Mathematik GmbH, W-7513 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-58769, der Autoren und des Zeitschriftenzitats angefordert werden.

Das Edukt Bis-N, N'-bis(trimethylsilyl)benzamidinatozirkoniumdichlorid 1 wurde durch folgende abgewandelte Literaturvorschrift dargestellt (vgl. [3]).

6.1. Bis-(N,N'-bis(trimethylsilyl)benzamidinato)-zirkonium-IV-dichlorid $(Siam)_2 ZrCl_2$ (1)

Zu einer gerührten Lösung von 62,5 ml n-Butyllithium (1.6 m) in Hexan (0.1 mol) werden bei 0°C in folgender Reihenfolge 16.1 g (0.1 mol) Hexamethyldisilazan 25 ml Ether und 10.3 g (0.1 mol) Benzonitril tropfenweise zugegeben. Die entstandene Reaktionslösung wird bei 0°C während 2 h in eine kräftig gerührte Suspension von 18.9 g (0.05 mol) $ZrCl_4(THF)_2$ in 50 ml Ether getropft. Nach erfolgter Zugabe erwärmt man auf Raumtemperatur, läßt noch 4 h ausreagieren und sammelt die ausgeschiedene Substanz auf einer G4-Fritte. Nun wird mit Methylenchlorid extrahiert. Aus dem Extrakt kristallisieren in der Kälte 15.6 g (45.3%) reines 1.

¹H-NMR (C_6D_6): δ 0.05 (36H, s, Si-CH₃); 7.2-8.0 (10H, m, Ph) ppm. ¹³C-NMR (C_6D_6): δ 2.0 (Si-CH₃); 126.2; 128.4; 139.6 (Ph); 184.9 (CN₂) ppm.

Die Mutterlauge enthält neben 1 noch etwas 3.

6.2. Bis-(N,N'-bis(trimethylsilyl)benzamidinato)-zirkonium-IV-diiodid $((Siam)_2 ZrI_2)$ (2)

In eine Suspension von 4.2 g (6.48 mmol) **4** in 20 ml Ether wird bei 0°C unter Rühren langsam 30 ml einer etherischen Lösung von 3.3 g (13.0 mmol) frisch sublimiertem Iod tropfenweise zugegeben. Die Iodlösung wird entfärbt, und der Bodenkörper löst sich auf. Das

Tabelle 6

Kristallographische Daten

	1	2	3	4	6
Kristallmorphologie	farbloses Prisma	farbloses Prisma	farblose hexagonales Prisma	farbloses Prisma	gelbe Quader
Kristallgröße (mm)	0.44 imes 0.32 imes 0.28	0.40 imes 0.38 imes 0.36	0.40 imes 0.40 imes 0.36	0.60 imes 0.60 imes 0.48	0.40 imes 0.38 imes 0.36
Summenformel	$C_{26}H_{46}Cl_2Si_4N_4Zr$	$C_{26}H_{46}I_2Si_4N_4Zr$	$C_{40}H_{77}Cl_{3}Si_{6}N_{6}Zr$	$C_{28}H_{52}Si_4N_4Zr$	$C_{40}H_{60}Si_{4}N_{4}Zr$
Molekulargewicht (gmol ⁻¹)	689.2	872.1	1008.2	648.3	800.5
Kristallsystem	monoklin	monoklin	hexagonal	monoklin	monoklin
Raumgruppe	C2/c	C2/c	P3c1	C2/c	C2/c
Gitterparameter					
a (Å)	21.284(5)	21.767(3)	21.580(3)	21.701(6)	34.434(7)
b (Å)	9.335(2)	9.582(2)	21.580(3)	9.384(2)	13.648(3)
c (Å)	18.056(3)	17.670(6)	20.260(1)	17.809(2)	19.911(4)
β (°)	94.91(1)	99.23(1)		95.12(1)	108.36(8)
Elementarzellenvolumen $V(Å^3)$	3574(1)	3638(1)	8171(2)	3612(1)	8881(3)
Dichte $\rho_c (g \text{ cm}^{-3})$	1.28	1.59	1.23	1.19	1.20
Anzahl der					
Formeleinheiten Z	4	4	6	4	8
Absorptionskoeffizient					
$\mu(MoK\alpha)(cm^{-1})$	6.1	21.3 (ψ-scan)	5.1	4.5	3.9
Temperatur (°C)	20(1)	- 90(1)	20(1)	20(1)	-90(1)
$2\theta_{\max}$ (°)	55.0	64.0	55.0	50.0	55.0
gemessene Reflexe	4452	6785	4954	4495	10249
symmetrieunabhängige					
Reflexe	4319	6303	4800	4108	10086
beobachtete Reflexe					
mit $I > 2\sigma(I)$	3553	5283	3450	3812	7116
verfeinerte Parameter	168	169	316	168	682
<i>R</i> ₁	0.039	0.027	0.065	0.031	0.038
$wR_2(Rw)$	(0.057)	(0.038)	0.124	(0.050)	0.094
"Goodness of fit"	2.02	1.36	1.24	2.03	1.08
Restelektronendichte					
(electrons $Å^{-3}$)	0.44	0.46	0.33	0.24	0.60

Lösungsmittel wird im Vakuum abdestilliert. Im Destillat ist gaschromatographisch Methyliodid nachweisbar. Der Rückstand wird aus n-Hexan umkristallisiert. Ausbeute: 5.2 g (92.0%) 2 in Form farbloser Kristalle.

Elementaranal. Gef.: C, 35.8; H, 5.3; N, 6.4. $C_{26}H_{46}I_2N_4Si_4Zr$ (872.0 g mol⁻¹) ber.: C, 37.0; H, 5.4; N, 6.0%. ¹H-NMR (CD₂Cl₂): δ 0.05 (36H, s, Si-CH₃); 7.2-8,0 (10H, m, Ph) ppm. ¹³C-NMR (CD₂Cl): δ 2.4 (Si-CH₃); 126.3; 129.0; 130.1; 139.1 (Ph); 184.2 (CN₂) ppm.

6.3. Tris-(N,N'-bis(trimethylsilyl)benzamidinato-zirkoniumchlorid ($(Siam)_3 ZrCl \cdot CH_2 Cl_2$) (3)

6.3.1. Variante A

Zu einer gerührten Lösung von 62.5 ml *n*-Butyllithium (1.6 m) in Hexan (0.1 mol) werden bei 0°C nacheinander 16.1 g (0.1 mol) Hexamethyldisilazan, 25 ml Ether und 10.3 g (0.1 mol) Benzonitril tropfenweise zugegeben. Nun werden in kleinen Portionen insgesamt 9.4 g (0.025 mol) $\text{ZrCl}_4(\text{THF})_2$ bei 0°C zugesetzt. Nach erfolgter Zugabe erwärmt man auf Raumtemperatur, läßt noch 4 h ausreagieren und vervollständigt die Kristallisation bei -25° C. Die ausgeschiedene Substanz wird auf einer G4-Fritte gesammelt und mit Methylenchlorid extrahiert. Aus der Lösung kristallisieren in der Kälte 4.9 g (19.6%) **3** als weiße hexagonale Kristalle.

Elementaranal. Gef.: C, 47.4; H, 7.1; N, 8.4; C1, 10.6. $C_{40}H_{71}Cl_3N_6Si_6Zr$ (1002.12 g mol⁻¹) ber.: C, 46.3; H, 6.9; N, 7.6; Cl, 9.7%. ¹H-NMR (C_6D_6): δ 0.20 (27H, s, Si-CH₃); 0.40 (27H, s, Si-CH₃); 7.2-8.0 (15H, m, Ph) ppm. ¹³C-NMR (C_6D_6): δ 3.9 (Si-CH₃); 4.2 (Si-CH₃); 140.2; 129.0; 128.4; 126.2 (Ph); 182.2 (CN₂) ppm.

6.3.2. Variante B

Zu einer gerührten Lösung von 30 ml *n*-Butyllithium (1.6 m) in Hexan (48 mmol) werden bei 0°C 7.7 g (48 mmol) Hexamethyldisilazan, 15 ml Ether und 4.95 g (48 mmol) Benzonitril tropfenweise zugegeben. Nun werden in kleinen Portionen insgesamt 11.0 g (16 mmol) 1 bei 0°C zugesetzt. Nach erfolgter Zugabe erwärmt man auf Raumtemperatur, läßt noch 4 h ausreagieren und vervollständigt die Kristallisation im Tiefkühlschrank. Die ausgeschiedene Substanz wird auf einer G4-Fritte gesammelt und mit Methylenchlorid extrahiert. Aus der Lösung kristallisieren in der Kälte 9.0 g (56.2%) **3**.

6.4. Bis-(N,N'-bis(trimethylsilyl)benzamidinato)-dimethylzirkonium-IV ($(Siam)_2 Zr(CH_3)_2$) (4) (vgl. [10])

Bei -78° C wird in eine Suspension von 12.3 g (17.85 mmol) 1 in 180 ml Ether unter Rühren 29.0 ml (35.67 mmol) Methylmagnesiumiodid (1.23 m) in Ether tropfenweise zugegeben. Nun wird langsam auf Raum-

temperatur erwärmt und noch 2 h weitergerührt. Nach Zugabe von Dioxan werden die ausgefallenen Magnesiumsalze auf einer G4-Fritte abgetrennt. Der Filterkuchen wird nochmals mit 100 ml Ether ausgewaschen und die vereinigten Filtrate werden im Vakuum bis zur beginnenden Kristallisation eingeengt. Ausbeute: 8.5 g (73.5%) **4** weiße lichtempfindliche Kristalle.

Elementaranal. Gef.: C, 51.9, H, 8.1; N, 8.7. $C_{28}H_{52}N_4Si_4Zr$ (648.3 g mol⁻¹) ber.: C, 52.0; H, 8.2; N, 9.0%. ¹H-NMR (C_6D_6): δ 0.05 (36H, s, Si-CH₃); 0.93 (6H, s, Zr-CH₃); 6.9-7.2 (10H, m, Ph) ppm. ¹³C-NMR (C_6D_6): δ 2.2 (Si-CH₃); 44.8 (Zr-CH₃); 126.2; 1283; 128.6; 141.0 (Ph); 184.4 (CN₂) ppm.

6.5. Bis-(N,N'-bis(trimethylsilyl)benzamidinato $)\eta_2$ -benzyl-zirkonium-IV-chlorid ($(Siam)_2 ZrCl(CH_2C_6H_5)$) (5)

In 4.2 g (6.09 mmol) 1—in 50 ml Ether suspendiert —werden bei -78° C unter Rühren 8.7 ml (6.09 mmol) Benzylmagnesiumchlorid (0.7 m) in Ether zugetropft. Nun wird langsam erwärmt. Bei -20° C beginnt sich die Lösung gelb zu färben. Die Reaktion wird durch vierstündiges Rühren bei 20°C vervollständigt. Nun wird Dioxan zugetropft und das ausgefallene Magnesiumchlorid auf einer G4-Fritte abgetrennt. Der Filterkuchen wird mit 50 ml Ether gründlich ausgewaschen. Die vereinigten Filtrate werden im Vakuum bis zur Trockne eingeengt, der Rückstand wird in 70 ml n-Hexan aufgenommen und klar filtriert. Bei -30° C kristallisieren 2.15 g (47.6%) 5 als hellgelbe, schuppenförmige Kristalle.

Elementaranal. Gef.: C, 53.2; H, 7.2; N, 7.5. $C_{33}H_{53}ClN_4Si_4Zr$ (744.8 g mol⁻¹) ber.: C, 52.3; H, 8.2; N, 7.2%. ¹H-NMR (C_6D_6): δ 0.09 (36H, s, Si-CH₃); 3.02 (2H, s, CH₂-Zr); 6.9-7.5 (15H, m, Ph) ppm. ¹³C-NMR (C_6D_6): δ 2.4 (Si-CH₃); 76.7 (CH₂-Zr); 121.8; 126.3; 128.6; 129.0; 130.1; 147.9 (Ph); 185.6 (CN₂) ppm.

6.6. Bis-(N,N'-bis(trimethylsilyl)benzamidinato)di- η^{1} benzyl-zirkonium-IV ($(Siam)_{2}Zr(CH_{2}C_{6}H_{5})_{2}$ (6)

Bei -78° C werden in eine Suspension von 4.5 g (6.23 mmol) 1 in 100 ml Ether unter Rühren 19.0 ml (13.3 mmol) Benzylmagnesiumchlorid (0.7 m) in Ether zugegeben, danach wird langsam auf Raumtemperatur erwärmt und dann 5 h am Rückfluß gekocht. Nun wird durch Zugabe von Dioxan Magnesiumchlorid ausgefällt und über eine G4-Fritte abgetrennt. Der Filterkuchen wird mit 50 ml Ether ausgewaschen, und die vereinigten Filtrate werden bis zur Trockne eingeengt. Der Rückstand wird mit 70 ml *n*-Hexan aufgenommen, filtriert und bei -20° C zur Kristallisation gebracht. Man erhält als erste Fraktion 0.7 g (15.1%) 5. Die zweite Fraktion kristallisiert bei -45° C. Ausbeute, 1.2 g (24.1%) 6 als zitronengelbe Kristalle.

Elementaranal. Gef.: C, 60.0; H, 7.6; N, 7.0. $C_{40}H_{60}N_4Si_4Zr$ (800.5 g mol⁻¹) ber.: C, 57.8; H, 7.3; N, 7.3%. ¹H-NMR (C_6D_6): δ 0.00 (36H, s, Si-CH₃); 2.82 (4H, s, CH₂-Zr); 6.9-7.5 (15H, m, Ph) ppm. ¹³C-NMR (C_6D_6): δ 2.8 (Si-CH₃); 78.3 (CH₂-Zr); 121.1, 126.2; 128.3; 128.6; 129.0; 130.1; 140.5; 149.9; (Ph); 187.4 (CN₂) ppm.

Das scharfe Signal der benzylischen Methylengruppen bei 2.70 ppm beginnt sich beim Abkühlen in d^7 -Toluol ab 0°C zu verbreitern. Bei -35°C tritt Koaleszenz auf. Bei -40°C sind zwei grundliniengetrennte Signale zu sehen. NMR-Daten ($\Delta \delta = 80$ Hz; $T_c = 238$ K).

6.7. Bis-(N,N'-bis(trimethylsilyl)benzamidinato)di-allylzirkonium-IV ($(Siam)_2 Zr(C_3H_5)_2$) (7)

Bei 0°C werden in eine Suspension von 4.7 g (6.82 mmol) 1 in 100 ml Ether unter Rühren tropfenweise 7.0 ml (14.0 mmol) Allylmagnesiumchlorid (2.0 m) in THF zugegeben. Die Reaktionslösung nimmt sofort eine gelbe Farbe an. Nun wird langsam auf Raumtemperatur erwärmt. Das ausgefallene Magnesiumchlorid wird auf einer Schlenk-Glasfritte abgetrennt. Der Filterkuchen wird mit 50 ml Ether ausgewaschen, und die vereinigten Filtrate werden bis zur Trockne eingeengt. Der Rückstand wird mit 70 ml *n*-Hexan aufgenommen, und nach Filtration kristallisiert 7 bei -20° C aus. Ausbeute, 1.7 g (35.6%) 7 als gelb-orange lichtempfindliche Kristalle.

Elementaranal. Gef.: C, 54.87; H, 8.06. $C_{32}H_{56}N_4$ -Si₄Zr (700.4 g mol⁻¹) ber.: C, 55.80; H, 8.22%. ¹H-NMR (C_6D_6): δ 0.01 (36H, s, Si–CH₃); 3.71 (8H, d, J = 11.9 Hz, CH₂=); 6.70 (2H, q, J = 11.9 Hz, CH=); 6.97–7.21 (10H, m, Ph) ppm. ¹³C-NMR (C_6D_6): δ 3.5 (Si–CH₃); 86.7 (=CH₂); 127.1; 129.4; 141.3 (Ph); 143.3 (CH=); 182.0 (CN₂) ppm.

Das scharfe Signal der Silylgruppen bei 0.01 ppm beginnt sich beim Abkühlen ab -20° C in d^{7} -Toluol zu verbreitern. Bei -27.5° C tritt Koaleszent auf. Bei noch tieferen Temperaturen sind zwei grundliniengetrennte Signale zu sehen. NMR-Daten ($\Delta \delta = 75$ Hz; $T_{c} = 245.5$ K).

6.8. Katalytische Reaktionen

6.8.1. Reaktion mit Ethylen

0.1 mmol der Verbindungen 1, 3 beziehungsweise $[(Siam)ZrCl_3]_2$ in 50 ml Toluol werden mit 10 mmol MAO, eingesetzt als 30%ige Lösung in Toluol, Fa. Witco) in einem 200 ml-Stahlautoklaven bei 30°C unter Rühren umgesetzt. Nach 24 h wird unumgesetztes Ethylen abgelassen und die Mischung unter Eiskühlung mit halbkonzentrierter kalter wäßriger Salzsäure hydrolisiert. Nach Filtration, Waschen mit Toluol, Ethanol und Trocken erhält man 1.7-2 g nahezu farbloses Poly-

mer; das entspricht einer Umsatzzahl von 600-700 (24 h). Das erhaltene Polyethylen wurde nicht näher charakterisiert. Im Toluol-filtrat sind durch GC-MS keine weiteren oligomeren Produkte nachweisbar.

6.8.2. Reaktion mit Propylen

In einem 200 ml-Stahlautoklaven werden bei -50° C etwa 10 g Propylen einkondensiert, danach wird eine Lösung von 0.1 mmol der Verbindung 1, 3 oder [(Siam)ZrCl₃]₂ und 10 mmol MAO in 20 ml Toluol zudosiert. Nach 24 h Rühren bei 30°C wird unumgesetztes Gas abgelassen, danach wird die Mischung unter Eiskühlung mit halbkonzentrierter Salzsäure hydrolysiert. Die organische Phase wird abgetrennt, mit Natriumcarbonat getrocknet und danach im Vakuum destilliert. Lediglich im Falle von [(Siam)ZrCl₃]₂ konnten im Destillat die oligomeren Produkte (Dimere bis Pentamere $C_{15}H_{30}$) durch GC-MS indiziert werden. Der Gesamtgehalt dieser Oligomeren entspricht einer Umsatzzahl von ungefähr 100 (etwa 500 mg Produkt). Der ölige Destillationsrückstand ist ein Gemisch von höheren Oligomeren beziehungsweise ataktischen Polymeren, wie NMR-spektroskopische Vergleiche zeigen.

Unter gleichen Bedingungen wird mit dem System Cp_2ZrCl_2 -MAO eine nahezu quantitative Umsetzung bereits nach 2 h beobachtet. Es entsteht ein Oligomerengemisch, das Dimere bis Heptamere enthält, die durch GS-MS dedektierbar sind. Dabei sind Tetramere mit 40% Anteil die Hauptprodukte. Polymeres Produkt wird unter diesen Bedingungen nur in sehr geringen Mengen beobachtet.

6.8.3. Reaktion mit Norbornen

Die Reaktion wird wie beim Ethylen beschrieben mit 5 g Norbornen $(5.3 \times 10^{-2} \text{ mol})$ als Substrat, durchgeführt. Man erhält mit 1 und mit $[(\text{Siam})\text{ZrCl}_3]_2$ 1.4– 2.8 g von farblosem Polymer, das in Lösungsmitteln extrem schwer löslich ist.

IR: (δ (C–H), trans) 965 cm⁻¹ [17]. Thermogravimetrie: Bei 150°C 36% Masseverlust, bei 420°C vollständige Zersetzung.

6.8.4. Reaktion mit 1,5-Hexadien

0.1 mmol Komplexverbindung 1, 3 oder $[(Siam)Zr-Cl_3]_2$ werden mit 10 mmol MAO und 17 mmol Substrat bei 40°C in 20 ml Toluol umgesetzt. Durch Probenentnahme während der Reaktion wird der Verlauf mittels GC-MS verfolgt. Umsatz nach 24 h 10%, nach 15 d 42% (Umsatzzahl, 80). Es wird selektiv Methylencyclopentan gebildet. Dimere beziehungsweise Oligomere oder Polymere werden nicht gefunden.

Unter vergleichbaren Bedingungen erfolgt mit Cp_2ZrCl_2 -MAO nach 3 h vollständiger Umsatz. Das Produktgemisch enthält 33% Monomere (einschließlich 19% Methylen-cyclopentan, der Rest besteht aus Methyl-cyclopenten und Methyl-cyclopentan), 37%

Dimerengemisch, 23% Trimere, 7% Tetramere, jeweils durch GC–MS bestimmt).

Dank

Dem Bundesministerium für Forschung und Technologie gilt unser herzlicher Dank für die großzügige Förderung dieser Arbeit.

Literatur

- B. Schweder, D. Walther, R. Fischer, G. Bischof, B. Stang und H. Görls, Proc. Eur. Jpn. Symp. on Selective Processes and Catalysis Involving Small Molecules, Rennes, Frankreich, 14.– 16. September 1994, 1994, Abstract S. 61.
- [2] D. Fenske, E. Hartmann und K. Dehnicke, Z. Naturforsch. 43b (1988) 1611.
- [3] H.W. Roesky, B. Meller, M. Noltemeyer, U. Scholz und G.M. Sheldrick, *Chem. Ber.*, 121 (1988) 1403.
- [4] M. Wedler, F. Knösel, M.N. Noltemeyer, F.T. Edelmann und U. Behrens, J. Organomet. Chem., 388 (1990) 21.
- [5] C. Hagen, H. Reddmann, H.-D. Amberger und F. Edelmann, J. Organomet. Chem., 462 (1993) 69.
- [6] A.N. Chenega, R. Gomez und M.L.H. Green, J. Chem. Soc., Chem., Commun., (1993) 1415.
- [7] M. Wedler, F. Knösel, F.T. Edelmann und U. Behrens, Chem. Ber., 125 (1992) 1313.
- [8] D.G. Dick, R. Duchateau, J.J.H. Edema und S. Gamborotta, *Inorg. Chem.*, 32 (1993) 1959.

- [9] J.H. Teuben, R. Duchateau, C.T. van Wee und A. Meetsma, J. Am. Chem. Soc., 115 (1993) 4931.
- [10] (a) J.C. Flores, I.C.W. Chien und H.D. Rausch, Organometallics, 14 (1995) 1827.
 (b) I.R. Hagadorn und J. Arnold, Organometallics, 13 (1994)
- 4670.
 [11] K. Prout, T.S. Cameron, R.A. Forder, S.R. Critchley, B. Denton und G.V. Rees, Acta Crystallogr. Sect. B, 30 (1974) 2290.
- [12] (a) G.A. Sim und M.A. Bush, J. Chem. Soc. A, (1971) 2225.
 (b) Z. Hou, T.L. Breen und D.W. Stephan, Organometallics, 12 (1993) 3158.
- [13] W.E. Hunter, D.C. Hrncir, R.A. Vann Bynum, R.A. Penttila und J.L. Atwood, Organometallics, 2 (1983) 750.
- [14] (a) E. Sammuel und M.D. Rausch, J. Am. Chem. Soc., 95 (1973) 6263.
 (b) J.M. Manriquez, D.R. McAlister, R.D. Sanner und J.E.

(b) J.M. Manriquez, D.R. McAlister, R.D. Sanner und J.E. Bercan, J. Am. Chem. Soc., 100 (1978) 2716.

- [15] (a) J. Scholz, F. Rehbaum, K.-H. Thiele, R. Goddard, P. Betz und C. Krüger, J. Organomet. Chem., 443 (1993) 93.
 (b) J.M. Atkison und P.B. Brindey, J. Organomet. Chem., 411 (1991) 131.
- [16] H.A. Martin, T.J. Lemare und F. Jellinek, J. Organomet. Chem., 14 (1968) 149.
- [17] (a) T. Oshika und H. Tabichi, Bull. Chem. Soc. Jpn., 41 (1968) 211.
- (b) T.J. Katz und N. Acton, *Tetrahedron Lett.*, 43 (1976) 4251.
 [18] G.W. Coates und R.M. Waymouth, J. Am. Chem. Soc., 115
- (1993) 91. [19] MOLEN, An Interactive Structure Solution Procedure, Enraf-
- Nonius, Delft, 1990.
- [20] G.M. Sheldrick, *SHELXS-86, ein Programm zur Lösung von Kristallstrukturen,* Universität Göttingen, Göttingen, 1980.
- [21] G.M. Sheldrick, SHELKXL-93, ein Programm zur Verfeinerung von Kristallstrukturen, Universität Göttingen, Göttingen, 1993.
- [22] G.M. Sheldrick, Molekülstruktur, SHELXTL / PC, Siemens Analytical X-Ray Instruments, Inc., Madison, WI, 1992.